Yeast functional screen to identify genetic determinants capable of conferring abiotic stress tolerance in Jatropha curcas

نویسندگان

  • Nalini Eswaran
  • Sriram Parameswaran
  • Balaji Sathram
  • Bhagyam Anantharaman
  • Raja Krishna Kumar G
  • Sudhakar Johnson Tangirala
چکیده

BACKGROUND Environmentally inflicted stresses such as salinity and drought limit the plant productivity both in natural and agricultural system. Increasing emphasis has been directed to molecular breeding strategies to enhance the intrinsic ability of plant to survive stress conditions. Functional screens in microorganisms with heterologous genes are a rapid, effective and powerful tool to identify stress tolerant genes in plants. Jatropha curcas (Physic nut) has been identified as a potential source of biodiesel plant. In order to improve its productivity under stress conditions to benefit commercial plantations, we initiated prospecting of novel genes expressed during stress in J. curcas that can be utilized to enhance stress tolerance ability of plant. RESULTS To identify genes expressed during salt tolerance, cDNA expression libraries were constructed from salt-stressed roots of J. curcas, regulated under the control of the yeast GAL1 system. Using a replica based screening, twenty thousand yeast transformants were screened to identify transformants expressing heterologous gene sequences from J. curcas with enhanced ability to tolerate stress. From the screen we obtained 32 full length genes from J. curcas [GenBank accession numbers FJ489601-FJ489611, FJ619041-FJ619057 and FJ623457-FJ623460] that can confer abiotic stress tolerance. As a part of this screen, we optimized conditions for salt stress in J. curcas, defined parameters for salt stress in yeast, as well as isolated three salt hypersensitive yeast strains shs-2, shs-6 and shs-8 generated through a process of random mutagenesis, and exhibited growth retardation beyond 750 mM NaCl. Further, we demonstrated complementation of the salt sensitive phenotypes in the shs mutants, and analyzed the expression patterns for selected J. curcas genes obtained from the screen in both leaf and root tissues after salt stress treatments. CONCLUSIONS The approach described in this report provides a rapid and universal assay system for large scale screening of genes for varied abiotic stress tolerance within a short span of time. Using this screening strategy we could isolate both genes with previously known function in stress tolerance as well as novel sequences with yet unknown function in salt stress tolerance from J. curcas. The isolated genes could be over-expressed using plant expression system to generate and evaluate transgenic plants for stress tolerance as well as be used as markers for breeding salt stress tolerance in plants.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Cu/Zn superoxide dismutase from Jatropha curcas enhances salt tolerance of Arabidopsis thaliana.

Superoxide dismutases (SODs) are involved in protecting plants against diverse biotic and abiotic stresses. In the present study, a novel Cu/Zn-SOD gene (JcCu/Zn-SOD) was cloned from Jatropha curcas L. Quantitative reverse transcription-polymerase chain reaction analysis revealed that JcCu/Zn-SOD is constitutively expressed in different tissues of J. curcas and induced under NaCl treatment. To ...

متن کامل

JcLEA, a Novel LEA-Like Protein from Jatropha curcas, Confers a High Level of Tolerance to Dehydration and Salinity in Arabidopsis thaliana

Jatropha curcas L. is a highly drought and salt tolerant plant species that is typically used as a traditional folk medicine and biofuel crop in many countries. Understanding the molecular mechanisms that underlie the response to various abiotic environmental stimuli, especially to drought and salt stresses, in J. curcas could be important to crop improvement efforts. In this study, we cloned a...

متن کامل

Selection of Reliable Reference Genes for Gene Expression Studies in the Biofuel Plant Jatropha curcas Using Real-Time Quantitative PCR

Jatropha curcas is a promising renewable feedstock for biodiesel and bio-jet fuel production. To study gene expression in Jatropha in different tissues throughout development and under stress conditions, we examined a total of 11 typical candidate reference genes using real-time quantitative polymerase chain reaction (RT-qPCR) analysis, which is widely used for validating transcript levels in g...

متن کامل

Repertoire of SSRs in the Castor Bean Genome and Their Utilization in Genetic Diversity Analysis in Jatropha curcas

Castor bean and Jatropha contain seed oil of industrial importance, share taxonomical and biochemical similarities, which can be explored for identifying SSRs in the whole genome sequence of castor bean and utilized in Jatropha curcas. Whole genome analysis of castor bean identified 5,80,986 SSRs with a frequency of 1 per 680 bp. Genomic distribution of SSRs revealed that 27% were present in th...

متن کامل

Genetic diversity assessment in physic nut (Jatropha curcas L.)

Mahalanobis’ D-square (D2) statistics was applied to assess diversity in the 9 genotypes collectedof semi-arid region of India (7 genotypes from Gujarat and Rajasthan for normal toxic and two fromOrissa csmcri’s plantation of non toxic nature. These genotypes were grouped into five. Cluster I andIII had two genotypes, cluster II had three genotypes and cluster VI and V contributed as solitaryge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2010